Challenges Related to Extending Hybrid Simulation to Exploring the Next Generation of Structural Control Devices

Nicholas E. Wierschem, Ph.D

Assistant Professor
Department of Civil and Environmental Engineering
University of Tennessee, Knoxville

Structural Control Devices

Particle Dampers

Inerter-based Devices

Nonlinear Energy Sinks

Negative Stiffness Devices

Impact Dampers

Devices with Shape Memory Alloys

Large-scale Testing

Directions in Research

- WP 27 / JRA 5: Innovative testing methodologies for component/system resilience
 - Task 27.2 Advanced testing of components / substructures with hybrid simulations and shaking tables
 - Task 27.3 Advanced multi-hazard testing of prototype urban infrastructure using coupled conventional and city-laboratory facilities

Nonlinear Restoring Force

- Nonlinear energy sinks exploit essential nonlinearities
 - Nonlinearizable, with zero initial stiffness
- Realized with geometric and repeatable material nonlinearities
- Researchers are currently working to adapt and develop RTHS method for strongly nonlinear applications (including Maghareh et al.)

Nonlinear Restoring Force

Nonlinear Restoring Force

Impact

State Switching

- Some passive and semiactive devices feature state changes
- These changes in states can be sudden
- Can results in large changes in the natural frequencies of the system

Multi-axis Control

- Multi-axis controls and interactions are important work some applications and studies
- Some or all of the nonlinearities, impacts, stateswitch complications may apply.

Substructuring Choices

Closing Remarks

- The structural dynamics and mitigation community is excited for RTHS
- There are plenty of studies that are good candidates to benefit from RTHS
- There are also plenty of challenges to consider that will push forward the state of the art of RTHS